
Syntax and Morphology; a Single Computational
Engine

Hilda Koopman
koopman@ucla.edu

University of California, Los Angeles

Paris EALING 2010
september 7 and september 8th

Koopman Single computational engine 1

The atoms that Merge manipulates are not words but much
tinier units.

There is a single component for building structure, and that is
syntax.

There is no independent morphological
component(derivational or inflectional or otherwise)

Current theoretical understanding, and expectations

Mandarin resultative compounds

with further excursions into comparative syntax (serial verb
constructions (Ewe (serial verbs) English Dutch resultatives)

Koopman Single computational engine 2

Strings of verbs: Mandarin V V ’compounds’

resultative la kai ’pull open’ ; xiao si ’ laugh die’ =laugh
someone to death

tiao wu lit. jump dance’ ’dance’; tao lun lit: ask for-discuss
=’ discuss’

V N (verb object compound) fang jia ’release-vacation’
=’have vacation’

Different distributional properties (Thompson, 1973)
placement of LE (perfective aspect)
position of the potential particle de or bu (NEG.POT)
behavior under reduplication (’casual’ interpretation)

V1V2res V1V2compound V N
LE V1V2-LE V1V2 LE V LE N
POT V1 de V2 V1*de V2
RED (V1V1 V2) V1V2-V1V2 V1 V1 N

Koopman Single computational engine 3

A glimpse at Mandarin resultative V1 V2 ’compounds’

Very long tradition of study. (Thompson 1973, Yafeil Li 1990, A.Williams 2005 , Sybesma 1997, Cheng

and Huang (1997), Cheng (1994), Zang (2007) Wang (2010) among many many others)

V1 V2 resultatives: V1 and V2 get pronounced ’close’ to each
other; (Why call these ’compounds’?)

Perfective LE follows V1 V2

(1) Ta
He

la
pull

kai-
open-

le
PERF

men
door

He pulled the door open

object of V1 follows V2/LE.

Koopman Single computational engine 4

Potential ’de’ and ’bu’ come between V1 and V2.

(2) Ta
He

la-
pull-

de-
can-

kai
open

men
door

He can pull the door open

(3) Ta
He

la
pull-

bu
cannot-

kai
open

men
door

He cannot open the door

V2 cannot be independently modified: (Williams 05:25) (or
followed by ’ji le’ (very) (Thompson, 73) (V1 can be preceded
by modifiers : (youdian), "considerably or comparatively’
scope over causation)

* V1 [Adv V2] .

(4) ta
3s

za
pound

(*hen)
(*very)

ping-
flat

le
-PERF

nakuai
that

rou.
meat

ÔS/he pounded that meat (*very) flat.Õ

(5) ta
3s

(youdian/chabuduo)za
(somewhat/almost)

ping-
pound

le
flat-

nakuai
PERF

rou
that meatKoopman Single computational engine 5

Ewe serial verbs, Collins 1997

(6) Me
I

nya
chase

ãevi-
child-

E

DEF
dzo
leave

’I chased the child away.’

(7) Kofi
Kofi

tsO

take
ati-
stick-

E

DEF
fo
hit

Yao.
Yao

’Kofi took the stick and hit Yao with it.’

(8) Wo
they

ãa
cook

fufu
fufu

ãu.
eat

’They cooked fufu and ate it.’

Koopman Single computational engine 6

Mandarin..Huge literature. (largely) lexicalist approaches not
surprizing!. V1 V2 resultatives: compounds. Compounding
takes place in morphology presyntactically/lexically; for the
syntax, compounds are atomic (Xo).

How did the field get there?

How to understand the distributtonal properties given current
(2010) theoretical understanding?

1 How can we understand the property of being pronounced ’as
a unit’ or in each other’s vicinity?

2 Empirical Focus : resultative constructions (Mandarin, Ewe
(serial verbs) and English, with some Dutch in the mix)

3 How do the distributional properties of these constructions
follow in a theory where there is no notion of construction?
How to support this analysis independently?

Koopman Single computational engine 7

Words as syntactic atoms. From Past to Present

Early generative grammar- generative semantics

Remarks on Nominalizations (1970)
Lectures on Government and Binding (1981)-’Principles and
Parameters’
Head movement (Koopman, 84; Travis 1984; Baker 85, Baker
88, Pollock 89, Pesetsky 96;

Minimalist Program (93-95); Decompositional approaches
Kayne (1994, 200, 2003, 2005, 2010) (Cartography (Rizzi
1997, Cinque 1999, 2005)leading to 2010 K and Sz (2000),
Koopman (2005); Distributed Morphology Halle and Marantz
(1993) Marantz, Embick etc, Nanosyntax, Starke, Pavel Caha
2009, Peter Muriangi 2008),

Koopman Single computational engine 8

Words versus phrases
For excellent discussions see DiSciullo and Williams (1987); Marantz Ealing lectures (2006), and

literature cited there

1 Intuitive distinction; but is that distinction theoretically
relevant? Historically: taking words to be syntactic atoms was a pretty good research

strategy, but this is no longer the case in current stage of the theory (K and Sz (2000)).
2 To the extent there are differences between words and phrases,

these need to be explained. (i.e differences cut across
syntax/morphology)

3 Modularity
Difference in module: atoms are different and computational
system is different.
But: atoms: M and S: LI (heads), categories (f-categories),
roots/"lexical" categories(n,v,A,P), bound/free.
computational system: Merge. satisfy properties of LI
(’head’-). Structure reflect the interpretation; Order does not
depend on (’narrow’) phonological notions. (cf. templatic
ordering morpheme ordering))

Koopman Single computational engine 9

An aside: can phonology determine linear order?

What is the reason/are the reasons much of syntax has been
shifted to Phonology? (narrow syntax vs other syntax); head
movement)

Given strict modularity. What can the role of phonology be in
ordering?(LCA)
Modularity: (re)ordering as a result of phonology can only
come about if it is only sensitive to phonological atoms (onset,
C V, syllable, foot.. (fun-fucking-tastic).

Koopman Single computational engine 10

The case of Puular
(Paster, 2005):
affix 1 is ordered closer to the root than affix 2 because of
phonological properties:
sonority scale: (dialect of Puular, Arnott, 1970))
(t , d, n, r)
–Cs must not decrease in sonority across morpheme
boundaries. (HK: there was an error on the original handout
But these morphemes also express semantic/syntactic
categories; order is determined by the hierarchy. (Cinque 1999, 2005).
Puular order obeys sonority as well as semantic/ syntactic
hierarchy: [root] 3 2 1
Fuuta Toora (Senegal) −−> affix order determined by
syntax/semantics, not by phonology. Affix order corresponds
to syntactic hierarchical: rest by morphological template).
3-1-2 order Koopman and Szabolcsi 2000, Koopman 2005,
Cinque 2005, Koopman Wolof.
Conclusion: syntax all the way (affix ordering not head movement, but regular phrasal movement
K and Sz (2000), K (2005))

Koopman Single computational engine 11

More Background: Linguistics 101: Morphology

Linguistics 101:
morpheme:smallest meaningful unit; (bound/free), (category).
what about case, agreement, complementizers, linkers, functional Ps, thematic vowels, infinitival

endings, and the like?

level 1 affixes: inner affixes: ’lexical causatives’ ’lexical
passives’ ’root affixes’ lots of idiosyncratic meanings

level 2 affixes: outer affixes (combine with stems (or roots)
categories). compositional semantics, ’productive’

phrasal affixes (’s), Japanese causative ’sase’, (cf
crosslinguistic variability (Case affixes (N or P)) etc)

clitics

’derivational’ morphology (derives new categories N, V, A etc)
’inflectional’ morphology (derives new f-categories (Plural, T
etc)

Do ’words’ result from head movement’ (no)?

Koopman Single computational engine 12

Linguistics 101 continued

Words have phonological integrity. ’stable molecules’ (cf.
cyclic spell out and phases: words are phases)

Words are semantically complex. "Words are complex ideas" ,
a few sound bites span large semantic (=syntactic)structures.

Koopman Single computational engine 13

(Alleged) differences..

lexical integrity : Subparts of words cannot be manipulated
by syntactic rules

Productivity (syntax is productive, morphology is (semi-)
productive)

Listedness: (only) words are listed.
Listeness scale: a scale from all(smallest) to a few(largest)
roots and morphemes, morphologically complex words,
compounds, phrases, sentences)

Blocking: existing words block other words (gloriosity blocks
(*gloriousness

headedness: words are right headed (English). (cf French
headedness cuts across (appendix)))

Koopman Single computational engine 14

lexical integrity

(9) Lexical integrity: Subparts of words cannot be manipulated
by syntactic rules.

a. Subparts of words are opaque for anaphoric relations
b. Subparts of words cannot (or can often not) be

manipulated by syntactic rules
c. There are certain heads which cannot appear within

words. ((11)

Koopman Single computational engine 15

lexical integrity (continued)

(10) Anaphoric islandhood (Postal 1969 CLS, Sproat 1993 in
Kaisse and Hargus (eds.))

a. I got a divorce from Sally and I’ll get one from Louise
too. (Postal)

b. *I divorced Sally and I’ll get one from Louise too.
c. Max works for conservation but I’m against it.

(Postal)
d. *Max is a conservationist but I’m against it.
e. *John wants to be a fireman because he likes putting

them out. (Sproat)
f. Harry is from New York but I wouldn’t want to open a

store there. (Postal)
g. *Harry is a New Yorker but I wouldn’t want to open a

store there. (Postal)

(11) a. *[the [how angry-ness]
b. *[to [the-baby]sit]

Koopman Single computational engine 16

Theoretical background-current 2010

"Minimalism" (+ Cartography)

1 Atoms (LI) ("Lexical Item")
2 Merge (External Merge. First Merge), Internal Merge (Move,

Second Merge); Bare Phrase structure (Antisymmetry)

What are the atoms (LIs)? What are their properties?

1 not words(traditional grammars), lexicalist theories; nor fully
inflected lexical items (current Minimalist practice).

2 but smaller units.. decompositional approaches (how small:
Distributed Morphology, ’Nanosyntax’ (Tromsoe), Koopman
and Szabolcsi (2000), Koopman (2005), Kayne 1994, 200
2003, 2005, 2010; Cinque (1999), (2005)

Koopman Single computational engine 17

Theoretical assumptions..(continued)

1 Words and phrases differ in output size; not w.r.t. atoms nor
where or how they are build

2 Locality; (Relativized) Minimality. (cyclic spell-out)
3 Single Computational Engine Hypothesis:

There is a single computational engine for building structure.

1 No structure building in either pre- or post-syntactic
components.

2 syntax is strictly derivational and antisymmetric, there is no
difference between narrow syntax and other syntax.

Koopman Single computational engine 18

Theoretical assumptions continued..

(12) Phonology is accessed cyclically (syntactic structures are
transferred to PF), syntactic structures encode the
meaning directly;

a. Syntactic atoms can be silent, i.e. lack any
phonological expression, (LI can be a tonal,
segmental,segmental and tonal, segmental etc; bound
(requiring a merged element, or free).

b. Mapping of phonological material to syntax is not one
to one, but one to many.

c. At transfer, the highest copy in a c-command chain is
subject to phonological insertion.

d. (+Principles regulating distribution of silent elements
(Koopman1996, 2000) Kayne 2003), Emonds (1987)
(2000))

Koopman Single computational engine 19

Theoretical assumptions

Properties of LIs drive the derivation ("lexical properties").
(Projection Principle, 1981). What are the lexical properties?

Principle of Locality of Selection: Sportiche 1998, 2005
Properties of LIs must be satisfied strictly locally (under strict
sisterhood.)
Merge (External merge (base generation) and Internal merge
(Move) are the only available mechanisms leading to satisfaction of
lexical properties, i.e. to convergence.

If Locality of Selection is correct, far-reaching analytical
consequences: considerably more derivational depth, tons of
movement(second merge); no Agree/extended projection for
checking local relations!

Koopman Single computational engine 20

Sportiche: Locality of Selection

If reconstruction, then movement. (Chomsky 1995).

If no reconstruction, then no movement

(13) a. In 1986, no integer had been proven to falsify
Fermat’s theorem (Sportiche 205) From Sportiche
2005: 83, 84:

b. In 1986, had been proven to no integer falsify
Fermat’s theorem

(14) Merged Structure:

a. Noprove ...[embeddedclause integer falsify...]

Surface:
[
¯
No integer] had been proven [to integer falsify] ..

Koopman Single computational engine 21

Locality of Selection

Why? D... [N V]
Usually it is assumed [D V], but instead [N V].
Systematically examine cases of selectional dependencies we
find, and do not find: Vs select for Ns, V *D, V do not (or
rarely) select for number, etc

This makes sense if Vs always select for N, not for Ds.

Locality of Selection forces DPs to be derived constituents. (it
forces N to combine with V) and D to combine with V and N.

DPs are derived constituents

PPs CPs etc are derived constituents (Kayne 2000, 2003)

–>Considerably greater derivational depth

Koopman Single computational engine 22

When nothing (much) happens...

Elements will end up being pronounced when selectional
properties of the LIs present in the structure. I.e. The smaller
the structures, the closer to the selector (or the trace of the
selector).
An example from Dutch complex predicates (N V)

(15) a. dat
that

hij
he

(*een)
(*a)

adem
air

haal-t
takes

that he breathes.
b. dat

that
hij
he

niet
not

meer
more

adem
breath

(*meer)
(more)

haal-t
takes

Neg>ADV> ..N

that he no longer breathes
c. dat

that
hij
he

geen
no

adem
breath

meer
longer

adem
breath

haalt
takes

(geen=NEG and Indef)

Internal Merge forced by properties of indefinite een: not by
properties of N(adem)Koopman Single computational engine 23

No Tinkering

NO TINKERING (NO TAMPERING, Chomsky 2005)

All properties reduce to independent properties. Best possible
case: reduce all properties of form to the way constituent
structure is build, (independent properties of Merge, properties
of LI, distribution of silent and pronounced material, locality,
semantic properties)

Koopman Single computational engine 24

Expectations

How can strings get pronounced next to each other:

(16) Strings can get pronounced next to each other because of:

a. external merge (yielding head complement order)
(c-command), or spec head (second merge)

b. internal merge (second merge (of a small piece of
structure)(traditional head movement, or Spec head,
both non distinct in bare phrase structure)):

c. by accident: pieces of structure happen to be spelled
within phrases that end up in close proximity: they are
’glued’ together by some other (silent) element.
(Mandarin resultatives)

Koopman Single computational engine 25

Head complement/spec head relations abound:

(17) Bill ’ll’ve been being criticized

(18) Inchoatives: (V to v movement, "spanning" of v V)

a. The ice melted, the sky darkened
b. The sun melted the ice, the painter darkened the sky
c. Bill’s book (’s), linkers etc.

Ntelitheos (2006, 57c)) Malagasy:

(19) ny
D

[f-
NML-

[if-
REC-

an-
AV-

p-
AGENTNML-

i-
AV-

anara-
study-

]n]’
CRC/LNK

ny
D

ankizy
children

ny
D

tena
language

gasy.
Malagasy

Lit: the children’s causing each other to become those who
study Malagasy’
The children’s teaching of Malagasy to each other’

Any examples of elements that get ’accidentally’ pronounced together? Manda

Koopman Single computational engine 26

Re: Mandarin resultative V1 V2 ’compounds’

(Thompson 1973, Yafeil Li 1990, A.Williams 2005 , Sybesma 1997, Cheng and Huang (1997), Cheng

(1994), Zang (2007) Wang (2010) among many many others)

V1 V2 resultatives: V1 and V2 get pronounced ’close’ to each
other;

Perfective LE follows V1 V2

(20) Ta
He

la
pull

kai-
open-

le
PERF

men
door

He pulled the door open

object of V1 follows V2/LE (and is interpreted as selected by
V2. (V1does not have to take an object)

Koopman Single computational engine 27

Potential ’de’ and ’bu’ come between V1 and V2.

(21) Ta
He

la-
pull-

de-
can-

kai
open

men
door

He can pull the door open

(22) Ta
He

la
pull-

bu
cannot-

kai
open

men
door

He cannot open the door

V2 cannot be independently modified: (Williams 05:25) (or
followed by ’ji le’ (very) (Thompsom, 73)

* V1 [Adv V2] or *V1 V2 DP ji le

(23) ta
3s

za
pound

(*hen)
(*very)

ping-
flat

le
-PERF

nakuai
that

rou
meat

(*ji
(*ji

le).
le)

S/he pounded that meat (*very) flat.’

Koopman Single computational engine 28

Interpretations

Yafei Li (1990):

(24) Taotao
Taotao

zhui-
chase-

lei-
tired-

le
asp

Youyou
Youyou

le
LE

a. Taotao chased Youyou and as a result Youyou got tired.
b. (Taotao chased Youyou and as a result Taotao got tired.)
c. Youyou chase Taotao and as a result Youyou got tired.
d. *Youyou chased Taotao and as a result Taotao got tired.

V1V2 alternate with phrasal resultatives (Huang, Zhang 2008)

I will ignore status and analysis of b; (relation to verb doubling) (cf (25))

a. and c: Surface object must be the argument of V2. Rules out d. (surface object does not
have to be an argument of V1)

ambiguity and representation.

(25) Taotao
Taotao

zhui
chase

Youyou
Youyou

zhui
chase

lei
tire

le.
LE

=(25) b.

Taotoa got tired from chasing Youyou

Koopman Single computational engine 29

Mandarin ’compounds’ distributional properties

Different distributional properties (Thompson, 1973)
placement of LE (perfective aspect)
position of the potential particle de or bu (NEG.POT)
behavior under reduplication (’casual’ interpretation)

V1V2res V1V2compound V N
LE V1V2-LE V1V2 LE V LE N
POT V1 de V2 V1*de V2
RED (V1V1 V2) V1V2-V1V2 V1 V1 N

Koopman Single computational engine 30

Most analyses in the Literature:cannot be available given
current assumptions.

no formation of compounds in the lexicon, presyntactically.

no modal de/bu lowering, or special placement rules (no
lowering in general)

no percolation mechanism to pass on arguments

No specific linking rules for thematic inversion (Yafei Li (1990)
Mandarin V1V2 compounds)

Languages cannot vary as to whether Vs introduce arguments
or not (Williams 2005).

Mandarin chase cannot vary from English chase in its basic
structural make-up; it can vary w.r.t. pronounciation (which
part the overt form spans)

Koopman Single computational engine 31

Building up the analysis from cratch

Yafei Li (1990):

(26) Taotao
Taotao

zhui-
chase-

lei-
tired-

le
asp

Youyou
Youyou

le
LE

a. Taotao chased Youyou and as a result Youyou got tired.
b. Taotao chased Youyou and as a result Taotao got tired.
c. Youyou chase Taotao and as a result Youyou got tired.
d. *Youyou chased Taotao and as a result Taotao got tired

Starting from c: ignoring b for reasons of time..

Recall: Vs select for N (D is outside) (D>CAUSE). The
smallest structure lacks any functional material

Koopman Single computational engine 32

’Standard" accounts for resultatives

He
laugh

himself silly

–v c-commands the resultative
–more complex; further structure

Koopman Single computational engine 33

A bi-eventive structure

(27) Taotao
Taotao

zhui-
chase-

lei-
tire-

le
asp

Youyou
Youyou

le
LE

(=16)

a. Taotao chased Youyou and as a result Youyou got tired.
b. Taotao chased Youyou and as a result Taotao got tired.

c. Youyou chase Taotao and as a result Youyou got tired

(CAUSE> BECOME> RES(tire) (INIT>PROCESS>RES)

tire remerges with CAUSE, CAUSE is silent.. (V to v).

tire cannot be modified (for the same reason as English *(very
redd(en)), red(en very))

What merges as the subject of CAUSE: an event; vP (c) or
VP(a)(=[Taotao’s chasing Youyou] tired Youyou out.

Koopman Single computational engine 34

Initial Merge structure (no Ds, no degree etc)

(28) Taotao
Taotao

zhui-
chase-

lei-
tire-

le
asp

Youyou
Youyou

le
LE

=c. Youyou chase Taotao and as a result Youyou got tired

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

At this level, everything is small, constituents need to be
grown (NOT root combining with DP (cf Harley 2007))
Vs select for N (D is outside) (D>CAUSE)
tire cannot be modified for the same reason as English *(very
redd(en))) (2 alternatives, DEG >CAUSE)

Koopman Single computational engine 35

Merge D with CAUSE)

D are merged higher than CAUSE. (reconstruction). Youyou
to D.
Hallman (2004): S S O S O O

N to D yields:

Youyoui

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

Koopman Single computational engine 36

Merge D with CAUSE)

D are merged higher than CAUSE. (reconstruction). Youyou
to D.
Hallman (2004): S S O S O O

N to D yields:

Youyoui

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

zhui- lei ’chase tire’ = compound, glued together by silent
CAUSE: chase is merged inside the subject of CAUSE and
does not c-command CAUSE.
object c-commands PRO and argument of zhui ’tire’.
Next: merge perfective le.

Koopman Single computational engine 36

Merge LE ; attract CAUSE

le
Youyoui

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

Koopman Single computational engine 37

Merge LE ; attract CAUSE

le
Youyoui

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

What moves to Perfective LE? (Cause) (classical head
movement configuration! interpretation achieved locally)
−−> Merge remnant CAUSE segment (2 options, lower
Cause segment or CausP, no need for head movement)
in English: this structure can only converge as ([Chasing Taotao]
tired Youyou..) Different options in Chinese, because of the absence
of -ing, infinitival morphology, tense morphology etc). vs no higher
than little v)

Koopman Single computational engine 37

CAUSE to PERF
Lower CAUSE segment:

le
Youyoui

PROi

v VP

Taotao chase

tire CAUSE

How does Taotao map onto D and the subject position? (no D within

initial small clause subject

option 1. A movement (wh- in situ) *Minimality (PRO intervenes)

option 2. A’ movement of Taotao to topic-like position. (wh-in-situ
does not behave as topic)

Koopman Single computational engine 38

MERGE VOICEpass
continued..

VOICEpass

le
Youyoui

PROi

v VP

Taotao chase

tire CAUSE

Attract big VP (Smuggling, Collins 2005), Koopman (2008),
Ishizuka (2010)..

Tree shown here: PASS> PERF; (also possible based on
Cinque (1999): PERF > PASS.)

Koopman Single computational engine 39

(Second) Merge big VP

continued..

VOICEpass

le
Youyoui

PROi

v VP

Taotao chase

tire CAUSE
Taotao chase

Koopman Single computational engine 40

Taotao to Subject: Minimality respected

VOICEpass

le
Youyoui

PROi

v VP

tire CAUSE
Taotao chase

zhui- lei ’chase tire’ does not form a constituent

V1 does not c-command V2!
PRO cannot control (or be made overt). Too low for purposives..
(volition is higher), If PRO would move to D (a precondition for
being pronounced or occur in a by-phrase)–> Mininimality violation
or condition C violation.

Koopman Single computational engine 41

On the presence of non active voice

Imperatives can only get the object resultative reading, i.e. the non
active derivation cannot be made into an imperative. (* be chased
by Bill!) (thanks to Zighuo Xie). (not predicted by say Yafei Li’s
analysis)

(29) Qu,
Go,

zhui
chase

lei
tire

yaoyao.
Yaoyao

Go chase Yaoyao tired!
*Go, get chased tired by Yao!

Koopman Single computational engine 42

The placement of the positive Potential de and Negative
Potential bu: raising of sentential subject to subject!

Merge silent MOD de (glossing over incompatibility with Perf LE is
incompatible here)

MODde

VOICEpass

Youyoui

PROi

vchase VP

tire CAUSE
Taotao chase

Koopman Single computational engine 43

Negative Potential with regular object resultative: V1 bu V2
DP

Merge Neg(bu) with MOD (with VOICE/CAUSE);. (raising to
subject of MOD and bu(neg) will bring V1 to the left of NEG.
(subject are always to the left of bu).

(30) [Taotao zui(chase) Youyou] bu [PRO zui(chase) Youyou]
MOD [tvP tire.CAUSE Youyou

Negbu

MOD

Youyoui tireTaotoai

v VP

Youyou chase

tire CAUSE

Koopman Single computational engine 44

When the subject of CAUSE is VP; MERGE vP/VOICEactive

(31) Taotao
Taotao

zhui-
chase-

lei-
tired-

le
asp

Youyou
Youyou

le
LE

(=16)

a. Taotao chased Youyou and as a result Youyou got
tired.

b. Youyou chase Taotao and as a result Youyou got tired

Koopman Single computational engine 45

When the subject of CAUSE is VP; MERGE vP/VOICEactive

(31) Taotao
Taotao

zhui-
chase-

lei-
tired-

le
asp

Youyou
Youyou

le
LE

(=16)

a. Taotao chased Youyou and as a result Youyou got
tired.

b. Youyou chase Taotao and as a result Youyou got tired

Youyoui tireYouyou chase
tire CAUSE

Koopman Single computational engine 45

Potential and Negative Potential
Silent Modal merges with Voice(middle) or active) (which merges
with Cause)

(32) Taotao
Taotao

zhui-
chase-

bu-lei
bu-

Youyou
tire

le
Youyou LE

a. Taotao cannot chase Youyou and as a result gets
Youyou tired.
Taotao’s chasing cannot tire Youyou
(
¯
Taotao cannot get chased tired by Youyou)

b. Youyou cannot chase Toatoa and as a result Youyou
gets tired

(with doubling:

(33) Taotao
Taotao

zhui
chase

youyou
Youyou

zhui
chase

bu
NEG.POT

lei
tire

Taotao cannot chased Youyou and as a result Taotao gets
tired=b.

Koopman Single computational engine 46

Taking stock

(34) Taotao zhui- lei- le Youyou le

=c. Youyou chase Taotao and as a result Youyou got tired

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

tire remerges with (silent) CAUSE (there is a way to get around this)

tire cannot be modified (for the same reason as English *(very redd(en)))

The event (vP)or VP merges as the subject of CAUSE (vP or VP?)

Koopman Single computational engine 47

continued..
D merges higher than Cause: N to D movement

(If vP); the object of V1 is smuggled past vP/PRO, due to silent non active VOICE in Mandarin
).

Merge LE; le follows V2 because le attracts CAUSE, as expected.

Silent modal (Potential) and Neg> Modal can merge with Perf/ CAUSE. Raising V1 Neg MOD
V2. (simplified)

MODAL

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

Koopman Single computational engine 48

continued..
Silent modal (Potential) and Neg> Modal can merge with CAUSE. Raising V1 Neg MOD V2.
(simplified)

MODAL

Youyoui tirePROi

v VP

Taotao chase

tire CAUSE

Koopman Single computational engine 49

other cases: VP as subject
Recall: K/D higher than Cause

agent introduced separate from Cause ((active) Voice) (Pylkkanen
2008)

(35) Taotao
Taotao

zhui-
chase-

lei-
tired-

le
asp

Youyou
Youyou

le
LE

(Y.Li, 1990)

a. Taotao chased Youyou and as a result Youyou got tired.
b. Taotao chased Youyou and as a result Taotao got tired.
c. (Youyou chase Taotao and as a result Youyou got tired.)

Koopman Single computational engine 50

other cases: VP as subject
Recall: K/D higher than Cause

agent introduced separate from Cause ((active) Voice) (Pylkkanen
2008)

(35) Taotao
Taotao

zhui-
chase-

lei-
tired-

le
asp

Youyou
Youyou

le
LE

(Y.Li, 1990)

a. Taotao chased Youyou and as a result Youyou got tired.
b. Taotao chased Youyou and as a result Taotao got tired.
c. (Youyou chase Taotao and as a result Youyou got tired.)

Taotao
vagent

Youyou

Youyou tire
VP

Youyou chase

tire CAUSE

Koopman Single computational engine 50

V1 V2 as output of syntax..

(36) Strings can get pronounced next to each other because of:

a. external merge (yielding head complement order)
(c-command), or spec head

b. internal merge (second merge (of a small piece of
structure)(traditional head movement, or Spec head,
both non distinct in bare phrase structure)):

c. by accident: pieces of structure happen to be spelled
within phrases that end up in close proximity: they are
’glued’ together by some other (silent) element.

Nothing special needs to be said about V1 V2: they are not
constituents at any level of derivation.

Koopman Single computational engine 51

Variability

Variability (within Mandarin/Chinese/crosslinguistically)

What CAUSE can merge with. (CAUSE (Process result)

What can merge as the subject of CAUSE (event: vP, VP, and
"CP", ’size of constituent’); the more material in the
constituent, the further away from cause the event will be.
(constituents are build up)

Interaction with other properties; Properties of Voice(active–
nonactive);

Interaction with individual LIs, silent or not;

Properties of Case: one D/ structural case for CAUSE
domain), binding, PRO etc

Koopman Single computational engine 52

More possibilities

T got tired chasing Youyou

Taotao
vagent

Youyou

*name/*PRO/SELFtire

VP

Youyou chase

tire CAUSE

Taotao
vagent

Youyou

Youyou tire
VP

someone chase

tire CAUSE

Koopman Single computational engine 53

English resultatives and scope of re-
What about English resultatives? small clause analyses [V1
CAUSE [BECOME] RES] (V1 c-commands small clause)
English re must attach to a change of state predicate
(*relaugh) or to a verb of creation/incremental theme. (they
rebaked the bake.)
(Edwin) Williams (does syntax exhaust all of morphology?)
(Willams 2007)

(37) a. John repainted the desk white
the desk was not white before (re does not scope over
white)
re does not c-command white

b. John rewhitened the desk
the desk was white before
re > white

Problem for analyses that assume that the same merge order
underlies these, with the well-supported conclusion that re- merges
with paint, and cannot merge with the adjectival part or theKoopman Single computational engine 54

(38)

CAUSE
table

BECOME
t white

re
paint table

(39)

John
CAUSE

table
re

BECOME
t white

Koopman Single computational engine 55

Conclusion
Given current (2010) theoretical understanding: single
computational engine, no tinkering and locality of selection,
decomposition.

1 shown that the expectations of the current theory (how to
understand the property of being pronounced in each other’s
vicinity or next to each other as one)

2 V1 V2 compounds. Not lexical units, not syntactic
constituents; They happen to be close to each other because
of the initial merged structure and the syntactic derivations.
Nothing special needs to be said in their regard.

3 How do the distributional properties of these constructions
follow in a theory where there is no notion of construction?
Sketched a (broad) syntactic account, which should form a
good basis for microcomparative and macrocomparative syntax

4 Applied the Mandarin analysis to English resultatives; showed
that merging re with the subject event yields the right scope
properties

Koopman Single computational engine 56

Conclusion

1 Applied the Mandarin analysis partially to English resultatives;
showed that merging re with the subject event yields the right
scope properties w.r. to paint.

2 I did not however give a full account (i.e. maybe white be be
both within or outside the resultative structure to start with)
Dutch white however incorporates whereas manners do not.

Koopman Single computational engine 57

