
Giorgio Magri (IJN, ENS) EALing 2010, ENS
magrigrg@gmail.com Paris, September 10, 2010

The OT online model of the acquisition of phonotactics
Class 4: correctness

Summary — This class introduces the final version of the OT online model of the early stage
of the acquisition of phonotactics; shows that the problem of the acquisition of phonotactics
in OT cannot be solved in its full generality (it is NP-complete), namely without restrictions
on the typologies (i.e. on the constraint set and the generating function); introduces a family
of typologies for which the OT online model is provably correct, no matter how the data are
sampled.

1 The OT online model of the acquisition of phonotactics
� General shape of the model. Recall from class 1, that an OT online algorithm maintains

a current ranking vector θ, initialized to some θinit, updated thorough the three steps (1).

(1)

step 1: get a surface
form ŷ; guess an

underlying form x; and
pick a loser y

//
step 2: check whether

the current θ is
compatible with the

triplet (x, ŷ, y)BC@A
OT−compatible

OO

GF ED
not OT−compatible

��
step 3: update the

current θ in response to
its failure on the triplet

(x, ŷ, y)

To complete the definition of the model, I need to specify:

(2) a. the initial ranking vector θinit;
b. the subroutine that provides the underlying form x in step 1;
c. the subroutine that provides the loser form y in step 1;
d. the update rule to be used in step 3.

I spell out my choices in the rest of this section.

� Initial ranking vector. Fikkert and De Hoop (2009, p. 325) note that:

(3) “The recurrent pattern in child language data is that children’s output is con-
siderably less marked than the corresponding adult target forms, for segmental,
syllabic and higher prosodic structure.

Standardly, (3) is captured by (4); see Smolensky (1996a,b) for theoretical arguments;
Jusczyk et al. (2002) for empirical evidence; and Davidson et al. (2004) for a review.
The only exception to (4) I know of is Hale and Reiss (1998).

(4) Markedness constraints are initially ranked above faithfulness constraints.

Smith (2000) and Revithiadou and Tzakosta (2004) refine (4) as follows:

(5) Positional faithfulness constraints are initially ranked above the corresponding
general faithfulness constraints.

A ranking vector that satisfies (4) and (5) is restrictive, as it corresponds to a smallest
language in the typology. I assume that the OT online model starts from a restrictive
initial ranking vector.

� Choice of the underlying form. We want to model the early stage of the acquisition of
phonotactics. That is the stage prior to morphological awareness. Thus, the child has no
access to alternations throughout this stage. As discussed in class 1, it thus makes sense
to assume fully faithful underlying forms.

(6) Given a surface form ŷ, the model assumes a fully faithful underlying form x =
ŷ in step 1.

Given a language L in the typology, consider all sets of triplets whose winner is a form
of L and whose underlying form is identical to the winner form:

(7) winner

|
(/rat/, [rat], [rad])
| |

faithful
underlying

form

loser

Consider the comparative rows corresponding to these many triplets and stack them one
on top of the other into the phonotactics comparative tableau A = A(L) corresponding
to L. Of course, it has the shape in (8): the faithfulness constraints cannot contain any L.

(8) A(L) =

faithfulness constraints markedness constraints

E,W L, E,W

In class 1, we commented a bit on assumption (6):

(9) a. it only makes sense provided that the set of underlying forms X coincides
with the set of surface forms Y , so that (6) does not apply to cases such as
syllabification, stress assignment, etceteras.

b. Tesar (2008) proves (6) is sound, as the corresponding comparative tableau
(8) is OT-compatible (under mild assumptions on the constraint set).

� Choice of the loser form. The most simple-minded strategy is as follows:

(10) Given an underlying/winner form x, the model picks at random a loser y ∈
Gen(x) in step 1.

Let Ax be the block of rows of the phonotactics tableau corresponding to triplets whose
underlying/winner form is x. In comparative notation, (10) thus becomes:

(11) Given an underlying/winner form x, the model picks at random a row of the
corresponding comparative block Ax in step 1.

This strategy can be refined as follows. Given a tableau A, there exists sometimes a
block A′ that captures all the relevant information carried by A, so that the remaining
rows A\A′ are redundant. We can thus use A′ instead of A for all intents and purposes.

(12) A =

A′

A \A′

←− crucial information

←− redundant information

To formalize this idea, let’s say that two comparative tableaux A and A′ (with the same
number of columns but possibly a different number of rows) are OT-equivalent iff:

(13) A ranking is OT-compatible with A iff it is OT-compatible with A′.

A sub-block A′ of A contains all the crucial information carried by A iff A′ is OT-
equivalent with A. Let:

(14) min(A) = a sub-block of A OT-equivalent to A that does not admit proper
sub-blocks OT-equivalent to A.

The strategy (11) can thus be refined as follows:

(15) Given an underlying/winner form x, the model picks at random a row from
min(Ax) in step 1.

Assumption (15) raises subtle algorithmic issues (is the minimal block unique? can it be
computed efficiently?); yet, (15) will play a crucial role in the analysis of the model.

� Update rule. In class 1, we concluded that:

(16) The OT online model of the early stage cannot work with demotion only. Rather,
we need constraint promotion in order to re-rank the faithfulness constraints too,
despite the fact that they are always winner-preferrers.

In classes 2 and 3, we thus worked hard to construct proper promotion/demotion update
rules. I will thus use the cautious promotion/demotion update rules deviced:

(17) a. promote every WPC by the total number of undominated LPCs;
b. demote every undominated LPC by the total number of WPCs.

2 Correctness
� Converging sequences. Consider a language L in a typology τ ; let:

(18) A = A(L) be the corresponding phonotactics comparative tableau.

Consider a run of the OT online algorithm on this language L. To start, we have a
restrictive initial ranking vector θinit, that comes with its OT-language Linit

(19) θinit

Linit

At time 1, we get a row a1 sampled from A(L) and update according to (17) to a
(possibly different) ranking vector θ1, that comes with its OT-language L1.

(20) a1

��
θinit

// θ1

Linit L1

At time 2, we get a row a2 sampled from A(L) and update according to (17) to a
(possibly different) ranking vector θ2, that comes with its OT-language L2.

(21) a1

��

a2

��
θinit

// θ1
// θ2

Linit L1 L2

Classes 2 and 3 guarantee that we will reach a time T after which we will not be able to
sample any row from A(L) that will trigger any update. The ranking vector θT and its
corresponding language LT are called the final vector and final language θfin and Lfin.

(22) a1

��

a2

��

. . . aT

��
θinit

//

��

θ1
//

��

θ2
//

��

. . . // θT

��

= θfin

Linit L1 L2
. . . LT = Lfin

A finite sequence a1, a2, a3, . . . , aT of rows of A(L) is L-convergent iff there is no
row of A(L) that will trigger an update if fed to the algorithm at time T + 1.

� Correctness. The OT online algorithm is called correct for a typology τ iff there exists
an initial ranking vector θinit such that for every language L in the typology τ and for
every L-converging sequence a1, . . . ,aT of rows from the corresponding phonotactics
comparative tableau A(L), the language entertained by the algorithm at any time t is a
subset of the target language:

(23) Lt 6⊆ L

In particular, at the final time we will have:

(24) Lfin ⊆ L

And by definition of L-converging sequence, (24) entails in turn that:

(25) Lfin = L

This is an extremely strong notion of correctness!

� Skeptisism. Intuitively, we expect that:

(26) In order for the OT online algorithm with a promotion-demotion update rule to
work as a model of the early stage, it is necessary that the relative promotion
speed of the faithfulness constraints matches their relative target ranking.

Let me illustrate the claim: the target ranking (27a) requires F above F ′; the relative
promotion speeds of F and F ′ in (27b) match this target ranking: F is promoted faster
than F ′, so that F ends up on top.

(27) a. F

��
M

��
F ′

b.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

M

F

Fprime

In fact, suppose F ′ was incorrectly promoted faster than F ; then F ′ ends up above F ; in
order for M to drop below F as required by the target ranking (27a), it also has to drop
below F ′.

(28)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

M

F

Fprime

But why on earth should we be able to get the right promotion speed of the two faith-
fulness constraints? and furthermore, why should we get it independently of how we
sample the input rows?

� Two main claims. Of course, the OT online model cannot be correct in the general case.
But we should not worry about that, in fact we will see in this class that:

(29) Universal correctness cannot be achieved, as the corresponding problem is prov-
ably not solvable.

Thus, we need to restrict ourselves to special classes of typologies. And we will se that:

(30) There exist simple yet not trivial class of typologies for which the OT online
algorithm is always correct.

Claim (29) is not too surprisingly. Claim (30) is more surprising, in fact:

(31) a. the OT online model is extremely simple, as almost nothing is built into it
towards restrictivity, besides the choice of the initial ranking;

b. the task of correctness as stated here is very demanding, as it requires the
algorithm to succeed on any training sequence.

3 The Ranking problem
� Basic formulation. Suppose that the actual Gen function and the actual constraint set
C were known. The basic Ranking problem would be:

(32) INPUT: a finite data setD of underlying/winner form pairs, OT-compatible with
some ranking;

OUPUT: a ranking� over the constraint set C that is OT-compatible with D.

But at the current stage of the development of the field, we have no firm knowledge of
the actual Gen function and the actual constraint set C.

� Strong formulation. It is thus standard practice to switch to the universal formulation
(33) of the problem, whereby Gen and Con figure as arbitrary input to the problem.

(33) INPUT: a) the Gen function and the constraint set C,
b) a finite data set D of underlying/winner form pairs, OT-

compatible with some ranking;
OUTPUT: a ranking� over the constraint set C that is OT-compatible with D.

See Wareham (1998), Eisner (2000), Heinz et al. (2009).

� Size of the problem. Following Tesar (1995) and Tesar and Smolensky (1998), I define
the size of an instance (33) of the Ranking pbm as in (34):

(34) INPUT: a) the Gen function and the constraint set C,
b) a finite data set D of underlying/winner form pairs, OT-

compatible with some ranking;
OUTPUT: a ranking� over the constraint set C that is OT-compatible with D;

SIZE: max
{
|C|, |D|, |Gen(D)|

}

where |Gen(D)| is the largest number of candidates over all underlying forms in D:

(35) |Gen(D)| def
= max

(x,ŷ)∈D

∣∣∣Gen(x)
∣∣∣

Letting the size of the problem depend on Gen(D) means that a solution algorithm has
the time to list all candidates for a given underlying form.

� Comparative notation. A data set D can be paired up with the corresponding compar-
ative tableau A(D) in the usual way. The Ranking pbm (34) is thus equivalent to the
following pbm:

(36) INPUT: an OT-compatible comparative tableau A∈{L, E, W}m×n;

OUTPUT: a ranking� over the constraint set C that is OT-compatible with A;

SIZE: max
{
m, n

}
.

The equivalence between the original formulation (34) of the Ranking pbm and the re-
formulation in (36) crucially relies on the two following parallelisms:

(37) a. the size of an instance of the
Ranking pbm (34) depends not
only on |C| and |D|, but also on
|Gen(D)| in (35).

⇐⇒ the size of an instance of the re-
formulation (36) depends on the
numbers m and n of rows and
columns of the tableau.

b. the universal formulation (34)
places no assumptions on the
Gen function and on the con-
straint set C

⇐⇒ the reformulation (36) places no
assumptions on the input com-
parative tableau.

As we saw in class 2, T&S prove that:

� Claim 1 The Ranking pbm (34) is tractable. Thus, no harm comes from switching to
the universal formulation, at least for the case of the Ranking pbm.

4 The problem of the acquisition of phonotactics
� Phonotactics. To know the phonotactics of a language L means:

(38) a. for every form in L, to know that it is in L;

b. for every form not in L, to know that it is not in L.

The Ranking pbm (34) captures the positive side (38a) of knowledge of phonotactics but
not its negative side (38b).

� Problem of the acquisition of phonotactics. I capture the desideratum (38b) with the
minimality condition (39b) on the language corresponding to the output ranking. Thus,
(39) is a formalization of the problem of the Acquisition of Phonotactics in OT.

(39) INPUT: a) the Gen function and the constraint set C,
b) a finite data set D of underlying/winner form pairs, OT-

compatible with some ranking;
OUTPUT: a ranking� over the constraint set C such that:

a) � is OT-compatible with D,
b) there is no ranking�′ OT-compatible with D too and such that

furthermore L(�′) $ L(�).

Cf. Berwick (1985); Manzini and Wexler (1987); Prince and Tesar (2004); Hayes (2004).

� Size of the problem. Let it depend generously on |X | and |Gen(X)|, rather than on |D|
and |Gen(D)| as in the Ranking problem (34).

(40) INPUT: a) the Gen function and the constraint set C,
b) a finite data setD of underlying/winner form pairs, OT-compatible with

some ranking;
OUTPUT: a ranking� over the constraint set C such that:

a) � is OT-compatible with D,
b) there is no ranking�′ OT-compatible withD too and such that further-

more L(�′) $ L(�).

SIZE: max
{
|C|, |X |, |Gen(X)|

}
.

This is a very generous formulation of the problem, in fact:

(41) a. the underlying form is provided for every given winning surface form;
b. the size of an instance of the pbm is as generous as it can be.

Since I want to show intractability, it is good to consider a generous formulation.

5 Prince and Tesar’s (2004) reformulation
� Strictness measures. A strictness measure is a function µ with the following shape:

(42) µ : � // a number µ(�) =
a relative measure of the cardinality of the
corresponding language L(�)

in such a way that any solution of pbm (43) is a solution of the pbm of the Acquisition
of Phonotactics (39).

(43) INPUT: a) the Gen function and the constraint set C,
b) a finite data set D of underlying/winner form pairs, OT-

compatible with some ranking;
OUTPUT: a ranking with minimal measure µ among those OT-comp. with D.

� A concrete example. Assume that the constraint set is split up into the subset F of
faithfulness constraints and the subsetM of markedness constraints:

(44) Con = F ∪M

The function µPT in (45) maps a ranking� to the number µPT(�) of pairs of a faith-
fulness and a markedness constraint such that the former is�-ranked above the latter.

(45) µPT(�)
def
=

∣∣∣∣{(F,M)∈F ×M
∣∣∣F �M

}∣∣∣∣
Prince and Tesar (2004) conjecture that the function µPT in (45) is a strictness measure.

� Prince &Tesar’s reformulation. Problem (43) with the mesure µPT in (45) is Prince
and Tesar’s reformulation of the pbm of the Acquisition of Phonotactics:1

(46) INPUT: a) the Gen function and the constraint set C,
b) a finite data setD of underlying/winner form pairs, OT-compatible with

some ranking;
OUTPUT: a ranking with minimal measure µPT among those OT-comp. with D;

SIZE: max{|C|, |D|, |Gen(D)|}.

Strictness measures determine relative strictness without looking at the entire set X .
Thus, the size of (46) depends on |D| and |Gen(D)|, rather than on |X | and |Gen(X)|
as for the original formulation (40) of the pbm of the Acquisition of Phonotactics.

6 The pbm of the acquisition of phonotactics cannot be solved
� Claim 2 The universal formulation of the pbm of the Acquisition of Phonotactics in

OT is NP-complete and thus cannot be solved by any algorithm, both in its original
formulation (40) as well as in Prince & Tesar’s reformulation (46).

� Proof. The CyclicOrdering problem as a decision problem is:

(47) INPUT: a) a finite set A;
b) a set T ⊆ A×A×A of triplets of elements of A;

OUTPUT: “yes” iff T is linearly cyclically compatible;

SIZE: the cardinality |A| of the given set.

where the set of triplets T is called linearly cyclically compatible iff there exist a linear
order > on the set A such that one of the following holds for every triplet (a, b, c)∈T :

(48) a. a < b < c,

b. b < c < a,

c. c < a < b.

Galil and Megiddo (1977) prove NP-completeness of Cyclic Ordering by reduction from
3-Satisfability; Cyclic Ordering is problem [MS2] in (Garey and Johnson, 1979, p. 279).
I prove claim 2 by constructing the following reductions:

1The Ranking pbm (33) corresponds to Empirical Risk Minimization in the Statistical Learning litera-
ture, while pbm (46) corresponds to a regularized version thereof, with regularization function µ.

(49) Cyclic

Ordering

� � //
PT-phonotactics (46) � � //

pbm (40) of the

acq. of phnotactics

In other words I show that:

(50) a. Each instance of the Cyclic Ordering pbm can be mapped into an instance of
the PT-Phonotactics pbm such that the answer to the former is “yes” iff the
answer to the latter is ‘yes”;

b. this mapping says that, if the PT-Phonotactics pbm were solvable, then
Cyclic Ordering would be solvable too;

c. since Cyclic Ordering is not solvable, then I conclude that PT-Phonotactics
is not solvable either.

and analogously for the embedding of PT-phonotactics into the original pbm (40) of the
acquisition of phonotactics. �

� Remarks. The proof actually shows that the pbm of the acquisition of Phonotactics (40)
remains NP-hard even when:

(51) a. the data have the simplest “disjunctive structure”, namely for each underly-
ing/winner/loser form there are at most two winner-preferring constrains;2

b. the data have the property that the faithfulness constraints are never loser-
preferring (as in the case of phonotactics comparative tableaux).

Claim 2 says that the switch to the universal formulation is harmless for the easy Ranking
pbm, as shown by claim 1, but harmful for the pbm of the Acquisition of Phonotactics.

� Interim conclusion. We have seen two properties of the OT online algorithm, together
with the corresponding computational problems. The correspondence consists in the fact
that, if the property holds, then the OT online model “solves” the corresponding problem.

(52) a.
convergence for the OT

online algorithm
Ranking problem

b.
correctness for the OT

online algorithm
Problem of the acquisition of

phonotactics

With respect to (52a):

(53) a. We have seen that the Ranking problem is “easy”, in the sense that the in-
trinsic logic of OT provides by itself enough structure to solve the problem;

b. thus, we can stick with the universal formulation of the problem, without in-
troducing further structure by restricting to special subclasses of typologies;

2Of course, if there were a unique winner-preferring constraint per underlying/winner/loser form
triplet, then the data would be OT-compatible with a unique ranking, and thus the pbm of the Acqui-
sition of Phonotactics (46) would reduce to the Ranking pbm (33).

c. in classes 2 and 3 we have thus demanded that the corresponding property of
convergence holds universally for the OT online algorithm, namely that the
algorithm converges for any typology.

With respect to (52b):

(54) a. We have just sees that the problem of the acquisition of Phonotactics is
“hard”, in the sense that the intrinsic logic of OT does not provide by it-
self enough structure to solve the problem;

b. thus, we cannot stick with the universal formulation of the pbm, rather need
to introduce further structure by restricting to special classes of typologies;

c. thus, we cannot demand that the corresponding property of correctness holds
universally for the OT online algorithm, namely it is correct for any typology.

This leads to the following research question:

(55) Are there families of typologies for which we can ensure correctness for the OT
online algorithm?

This is one more instance of the modeling strategy (56) of Cognitive Computational
Phonology, outlined in class 1.

(56) a. Single out the building blocks of the learning task (e.g. the Ranking problem,
the problem of the Acquisition of Phonotactics, etceteras);

b. study their complexity (e.g. claims 1 and 2 above);

c. devise algorithms that solve these problems up to their complexity class.

In the rest of this class, I concentrate on research question (55).

7 Some case studies
� Korean typology. The universal specifications are as follows, from Hayes (2004):

(57) a.
set of

underlying
forms

=
set of

surface
forms

=

ta, da, tha, dha,
at, ad, ath, adh,

ata, ada, atha, adha

b. set of
constraints =

F1 = IDENT[VOICE]
F2 = IDENT[ASPIRATION]
F3 = IDENT[VOICE]/ONSET

F4 = IDENT[ASPIRATION]/ONSET

M1 = ∗[-SONORANT, +VOICE]
M2 = ∗[+VOICE][-VOICE][+VOICE]
M3 = ∗[+SPREAD GLOTTIS]
M4 = ∗[+SPREAD GLOTTIS, +VOICE]

c. Gen is an equivalence relation defined by the following classes:

i. ta Gen∼ da Gen∼ tha Gen∼ dha

ii. at Gen∼ ad Gen∼ ath Gen∼ adh

iii. ada Gen∼ ata Gen∼ adha Gen∼ atha

The corresponding typology contains 40 languages. I got that:

(58) The OT online algorithm converges to the correct ranking for all 40 languages
(with the rows fed in step 1 sampled uniformly from the input tableau).

� Azba typology. The universal specifications are as follows, from Prince and Tesar (2004):

(59) a.
set of

underlying
forms

=
set of

surface
forms

=

pa, ba, ap, ab,
sa, za, as, az,

apsa, apza, absa, abza,
aspa, azpa, asba, azba

b. set of
constraints =

F1 = IDENT[STOP-VOICING]
F2 = IDENT[FRICATIVE-VOICING]
F3 = IDENT[STOP-VOICING]/ONSET

F4 = IDENT[FRICATIVE-VOICING]/ONSET

M1 = AGREE[VOICE]
M2 = ∗[+STOP-VOICING]
M3 = ∗[+FRICATIVE-VOICING]

c. Gen is an equivalence relation defined by the following classes:

i. pa Gen∼ ba ii. ap Gen∼ ab

iii. sa Gen∼ za iv. as Gen∼ az

v. apsa Gen∼ apza Gen∼ absa Gen∼ abza

vi. aspa Gen∼ azpa Gen∼ asba Gen∼ azba

The corresponding typology contains 37 languages. By the symmetry between [STOP-
VOICING] and [FRICATIVE-VOICING], I need to consider only 19 of them. I got that:

(60) The OT online algorithm converges to the correct ranking in the case of 18 out
of these 19 languages (with the rows fed in step 1 sampled uniformly from the
input tableau).

The language where the model returns a superset language is:

(61)

pa, ba, ap, ab,
sa, as,

apsa, abza,
aspa, azba

� Vowel typology. Given the following feature matrix:

(62) y i o e A a
HIGH + + - - - -
LOW - - - - + +

ROUND + - + - + -

Consider the following universal specifications:

(63) a.
set of

underlying
forms

=
set of

surface
forms

=

#y -y- y#
#i -i- i#
#o -o- o#
#e -e- e#
#A -A- A#
#a -a- a#

b. set of

constraints =

F1 = IDENT[HIGH] M1 = *[-HIGH, -LOW] = {o, e}
F2 = IDENT[LOW] M2 = *[WORD-FINAL HIGH]
F3 = IDENT[ROUND] M3 = *[NON-INITIAL, ROUND]

c. Gen is an equivalence relation defined by the following classes:

i. #y Gen∼ #i Gen∼ #o Gen∼ #e Gen∼ #A Gen∼ #a

ii. -y- Gen∼ -i- Gen∼ -o- Gen∼ -e- Gen∼ -A- Gen∼ -a-

iii. #y Gen∼ i# Gen∼ o# Gen∼ e# Gen∼ A# Gen∼ a#

The corresponding typology contains 10 languages. I got that:

(64) The OT online algorithm converges to the correct ranking for all 10 languages
(with the rows fed in step 1 sampled uniformly from the input tableau).

8 A framework for typologies
� Universal specifications. Recall from class 1, that a 4-tuple τ = (X ,Y, Gen, C) as in

(65) is called the universal specifications of a typology.

(65) X : (finite) set of underlying forms;

Y: (finite) set of surface forms;

Gen(x) ⊆ Y: set of candidate surface forms for the underlying form x;

C = {C1, . . . , Cn}: set of n constraints.
Constraint Ck takes a pair (x, y) of an underlying form x ∈ X and
a corresponding candidate y ∈ Gen(x) and returns a nonnegative
number Ck(x, y), called the number of violations.

� Set of forms. Assume there are N partial binary features (i.e. take value 0 or 1, or
if undefined). Phonology is feature-based (i.e. a form is characterized by its feature
values). Thus, the set of forms is defined as follows:

(66) X = a set of N -tuples x = (x1, . . . , xi, . . . , xN) of 0’s, 1’s and #’s.

Wlg, I assume that:

(67) For each feature, the marked value is 1, while 0 is the unmarked value.

For example, in the case of the Azba typology, we have:

(68) a. feature 1 = STOP-VOICING;
feature 2 = FRICATIVE VOICING

b.
{

pa = (0,#), ba = (1,#), sa = (#, 0), za = (#, 1),
apsa = (0, 0), apza = (0, 1), absa = (1, 0), abza = (1, 1)

}
The set of candidate surface forms is identical to the set of surface forms:

(69) Y = X

� Generating function. The Gen function takes a form x and returns the set Gen(x) of
all forms in Y = X that can be obtained from x by changing in all possible ways the
values of the features that x is defined for. More explicitly:

(70) Gen(x) =
{
y ∈ X

∣∣∣y is defined for the same features x is
}

For example, in the case of the Azba typology, we have:

(71) Gen(/apsa/) = Gen((0, 0)) =

[apsa] = (0, 0),
[apza] = (0, 1),
[absa] = (1, 0),
[abza] = (1, 1)

� Constraint set. The constraint set can contain three types of constraints:

(72) C ⊆

Fi = faithfulness constraint corresponding to
the feature i

Mi = simple markedness constraint correspond-
ing to the feature i

Mi,j = binary markedness constraint correspond-
ing to the two (different) features i and j

∣∣∣∣∣∣∣∣∣∣∣
i, j = 1, . . . , N

The faithfulness constraint Fi corresponding to feature i is defined as follows for every
underlying form x = (x1, . . . , xN) ∈ X and every corresponding candidate form y =
(y1, . . . , yN) ∈ Gen(x).

(73) Fi(x,y) =

{
1 if both x and y are defined for feature i and xi 6= yi
0 otherwise

For example in the case of the Azba typology with the positions in (68a):

(74) IDENT[STOP-VOICING] = F1

IDENT[FRICATIVE-VOICING] = F2

The simple markedness constraint Mi corresponding to feature i is defined as follows
for every form x = (x1, . . . , xN) ∈ X :

(75) Mi(x) =

{
1 if xi = 1
0 otherwise

For example in the case of the Azba typology with the positions in (68a):

(76) ∗[STOP-VOICING] = M1
∗[FRICATIVE-VOICING] = M2

The binary markedness constraint Mi,j corresponding to features i and j (with i 6= j)
is defined as follows for every form x = (x1, . . . , xN) ∈ X ; the set µ of feature
combinations punished by Mi,j is called its markedness pattern.

(77) Mi,j(x) =

{
1 if (xi, xj) ∈ µ
0 otherwise

where µ is some subset of {0, 1}2.

For example in the case of the Azba typology with the positions in (68a):

(78) AGREE[VOICING] = M1,2 with µ = {(0, 1), (1, 0)}

and in the case of the Korean typology with features 1 and 2 being VOICING and ASPI-
RATION:

(79) ∗[+SPREAD-GLOTTIS, +VOICE] = M1,2 with µ = {(1, 1)}

Binary markedness constraints are responsible for feature interaction.
� Remarks.

(80) a. The faithfulness constraints F1, . . . , FN are Ident-type faithfulness con-
straints; there are no DEP and MAX in this framework.

b. I assume that for each pair of features, there can be at most one binary
markedness constraint that targets those features

� Preview of the main claim. Consider a typology τ = (X , Gen, C) of the form (66)-(77)
corresponding to N features. Assume that:

(81) a. The mode of feature interaction is “simple”:
no binary markedness constraint punishes a form that is unmarked with re-
spect to both features targeted, namely there is no markedness pattern µ that
contains (0,0).

b. The amount of feature interaction is “limited”:
each feature interacts with at most another feature, namely there are no two
binary markedness constraints M4,7 and M7,2 that both target feature 7.

c. The set of candidates is “rich enough”:
if two features interact, then the set of forms contains all four possible com-
binations of those features.

Then, I will prove that the OT online algorithm is correct for the typology τ . And we
will see applications to the Azba typology and the vowel typology.

9 First part: simple interaction and rich candidate sets
� Simple mode of feature interaction. In this section, we want to understand what it

means that the mode of interaction between two features is simple. Thus, consider the
case of the typology (66)-(77) with N = 2 features. Here is the idea:

(82) The mode of feature interaction enforced by a binary markedness constraint
M1,2 is simple iff M1,2 interacts “smoothly” with the rest of the constraint set,
in the sense thatM1,2 does not punish a form which is unmarked with respect to
both simple markedness constraints M1 and M2.

As I have assumed that the markedness value of any feature is 1, then (82) says that the
mode of interaction between the two features is simple provided that the corresponding
binary markedness constraint does not punish (0, 0).

� Rich sets of candidates. Consider a typology τ = (X , Gen, C) of the form (66)-(77)
with N features. The Gen function is complete for a form x provided that Gen(x)
contains “all possible” candidates:

(83) |Gen(x)| = 2# of features x is defined for

For instance, consider x = (1, 0,#); Gen in (a) is complete while that in (b) is not.

(84) a. Gen(x) =

(1, 0,#)
(1, 1,#)
(0, 0,#)
(0, 1,#)

 b. Gen(x) =

(1, 0,#)

(0, 0,#)
(0, 1,#)

Gen is complete iff it is complete for any form.

� Claim 3 Consider a typology τ = (X , Gen, C) of the form (66)-(77) with only N = 2
features. Assume that:

(85) a. The markedness pattern of the unique binary markedness constraint in C (if
any) does not contain [00].

b. The Gen function is complete.

Then, there exists an initial ranking vector such that the OT online algorithm is always
correct on the typology τ .

� Counterexample against markedness patterns that contain [00]. Consider the fol-
lowing typology τ = (X , Gen, C), that fits into the scheme (66)-(77):

(86) a. X =
{

(00), (01), (10), (11)
}

b. Gen(x) = X

c. C =
{
F1, F2, M1, M2,M

}
,

where the binary markedness constraint M is only violated by x = (0, 0).

The following language belongs to the typology τ :

(87) L = {(01), (10)}

The phonotactics comparative tableau A(L) corresponding to L is as follows:

(88) A(L) =

F1 F2 M1 M2 M

(1,0), (1,1) W W

(1,0), (0,0) W L W

(1,0), (0,1) W W L W

(0,1), (1,1) W W

(0,1), (0,0) W L W

(0,1), (1,0) W W W L

A ranking� generates the language L iff it is a refinement of one of the two following
symmetric partial orders:

(89) a. F2

wwwww
M

xx
xx

x

M2 M1

F1

b. F1

wwwww
M

xx
xx

x

M1 M2

F2

Note that:

(90) a. The first row of both blocks in (88) does not trigger any update (it has no L’s
and thus is always OT compatible with the current ranking vector);

b. The second row of both blocks in (88) triggers at most one update (it has a
W corresponding to a markedness constraint that is never demoted).

Thus, for all intent and purposes, the input tableau consists of only the third row of the
two blocks in (88), namely the effective input tableau is as follows:

(91)
[F1 F2 M1 M2 M

(1,0), (0,1) W W L W

(0,1), (1,0) W W W L

]
There is no way that the OT online algorithm can start from a ranking vector that assigns
the same ranking value to F1 and F2 and converge on a ranking vector that represents
one of the two rankings in (89) if fed with the two rows in (91).

� Partial rankings. As anticipated in section 2, the though cases are those where the two
faithfulness constraints F1 and F2 need to be ranked wrt each other. When you look at
a typology, there are lots and lots of languages that are simple because F1 and F2 don’t
need to be ranked wrt each other. Since so far we have defined rankings as total orders
on the constraint set, we have no way of capturing the notion that F1 and F2 need not be
ranked wrt each other. Thus:

(92) From now on, a ranking� is a partial order over the constraint set, rather than a
total order as assumed so far.

Thus, (93) is a ranking in this new sense, as it is a partial order over the constraint set.
This ranking does not rank, say, F2 and M wrt each other.

(93) F2

wwwww
M

xx
xx

x

M2 M1

F1

The partial order (93) admits various refinements into a total order, for instance:

(94) M � F2 �M1 �M2 � F1

F2 �M2 �M1 �M2 � F1

...

A partial order such as (93) is called OT-compatible with a comparative tableau iff each
one of its total refinements is OT compatible with that tableau in the usual sense.

� Proof. In principle, claim 3 could be proved by case inspection:

(95) a. list all typologies that satisfy the hypotheses (there are not too many),

b. list all languages for each typology;

c. for each language, study the behavior of the OT online algorithm on the
corresponding phonotactics tableaux.

My actual proof is indeed just a refinement of this brute-force strategy.3 Let’s sort the
languages in a typology as follows:

(96) languageL

(a) is generated by a ranking
that does not rank F1 and F2

wrt each other

is only generated by rankings
that rank F1 and F2 wrt each
other, say F2 above F1

(b) in order to rank M1 in between

(c) in order to rank M2 in between

(d) in order to rank M in between

Thus I need to consider four cases (96a)-(96d). It turns out that:

(97) a. Case (a): the OT online algorithm is trivially correct;

b. Case (b): the OT online algorithm is correct;

3The refinement might especially turn out useful for the extension to the case N = 3, that I am
working on right now.

c. Case (c): is impossible;

d. Case (d): the OT online algorithm is correct.

Claim (97a) is very intuitive. It is not hard to show that in case (97b), the input tableau
can only have one of the following shapes and in each case the algorithm converges to
the correct final ranking.

(98) a.

F1 F2 M1 M2 M

W L W

=⇒ W L

W W L L

W W

W W W

W W W W

b.

F1 F2 M1 M2 M

=⇒ W L

W L W

=⇒ W L

W W L L

W W

W W W

W W W W

c.

F1 F2 M1 M2 M

=⇒ W L

W L W

W L W

W W L L

W W W

W W W

W W W W

Cases (97c) and (97d) are treated similarly. �

10 Second part: simple feature interactions
� Factor typologies. Consider a typology τ = (X , Gen, C) of the form (66)-(77). Split

up the feature set {1, . . . , N} into two disjoint sets Φ′,Φ′′. Wlg, assume that:

(99) {1, . . . , N} = {1, . . . ,M}︸ ︷︷ ︸
Φ′

∪ {M + 1, . . . , N}︸ ︷︷ ︸
Φ′′

Split up each form x ∈ X into an M -tuple x′ with the first M feature values of x and
an (N −M)-tuple x′′ with the remaining N −M feature values.

(100)
x = (

first M features︷ ︸︸ ︷
x1, . . . , xM , |

remaining N−M features︷ ︸︸ ︷
xM+1, . . . , xN)

uullllllllll

))SSSSSSSSSS

x′ = (x1, . . . , xM) x′′ = (xM+1, . . . , xN)

Collect all theM -tuples x′ thus defined in a set of forms X ′ and all the (N −M)-tuples
x′′ thus defined into a set of forms X ′′, as in (101).

(101) a. X ′ =
{
x′ ∈ {0, 1,#}M

∣∣∣ there exists x′′ s.t. (x′,x′′) ∈ X
}

b. X ′′ =
{
x′ ∈ {0, 1,#}N−M

∣∣∣ there exists x′ s.t. (x′,x′′) ∈ X
}

Define the generating functions Gen′ and Gen′′ as in (70), given explicitly in (102).

(102) a. Gen′(x′) =
{
y′ ∈ X ′

∣∣∣ dom(y′) = dom(x′)
}

b. Gen′′(x′′) =
{
y′′ ∈ X ′′

∣∣∣ dom(y′′) = dom(x′′)
}

Consider the two constraint sets C′ and C′′ as in (103). Note C might contain binary
markedness constraints that target a feature in Φ′ and one in Φ′′, and thus do not belong
to neither C′ nor C.

(103) a. C′ = set of those constraints in C that target only features in Φ′;
b. C′′ = set of those constraints in C that target only features in Φ′′.

The two typologies τ ′ = (X ′, Gen′, C′) and τ ′′ = (X ′′, Gen′′, C′′) are called the two
factor typologogies corresponding to the partition Φ′,Φ′′ of the feature set.

� Factorization of comparative blocks. We are interested in the following question:

(104) If I know something about the two factor typologies τ ′ and τ ′′, what can I say
about the original typology τ?

To make (104) concrete, consider an arbitrary form x ∈ X . Split it up into x = (x′ x′′)
as in (100). Consider the corresponding comparative blocks:

(105) a. Ax = comparative block corresponding to x w.r.t. typology τ ;
b. A′x′ = comparative block corresponding to x′ w.r.t. typology τ ′;
c. A′′x′′ = comparative block corresponding to x′′ w.r.t. typology τ ′′.

Split up the columns of Ax into three groups:

(106) a. columns corresponding to constraints in C′;
b. columns corresponding to constraints in C′′.
c. columns corresponding to constraints in C but not in C′ nor C′′.

Split up the rows of Ax into three sets:

(107) a. rows corresponding to losers that only differ from x for features in Φ′;
b. rows corresponding to losers that only differ from x for features in Φ′′;
c. rows corresponding to losers that differ from x for both features in Φ′′ and Φ′′.

The comparative block Ax thus has the shape in (108).

(108) Ax =

C′ C′′ C\(C′∪C′′)

E −− E

A′x′ | | A1

E −− E

E −− E

| | A′′x′′ A2

E −− E

A′x′ A′′x′′ A3

candidates (107a)
that differ only
for features in Φ′

candidates (107b)
that differ only
for features in Φ′′

candidates (107c)
that differ for
both features in
Φ′′ and Φ′′

Question (104) can now be made more explicit as follows:

(109) If I know something about the comparative sub-blocks A′x′ and A′′x′′ , what can
I say about the comparative block Ax?

Well, not much! But I could say a hell lot more if I got rid of the third vertical block,
consisting of A1, A2 and A3. This is the idea pursued in this section.

� Markedness graph with two components. Consider a typology τ = (X , Gen, C) of
the form (66)-(77) corresponding toN features. Assume the constraint set C is such that:

(110) The feature set can be split into two disjoint sets Φ′ and Φ′′ s.t. there is no binary
markedness constraint in C that targets both a feature in Φ′ and one in Φ′′.

Let the markedness graph corresponding to a constraint set be as follows:

(111) a. it has N nodes, one for every feature;
b. it has an edge between two nodes iff the constraint set contains a binary

markedness constraint that targets the two corresponding features.

Assumption (110) says that the markedness graph can be split into two components G′

and G′′ with no connections between the two, as in (112).

(112) ◦
block G′

KKKKKK

◦ ◦

ssssssssssssss

block G′′

99
99

99
99

9

◦

ssssss

◦
KKKKKK ◦

iiiiiiiiiiiii

◦

In other words again, the two sets of constraints C′ and C′′ defined in (103) exhaust the
constraint set C and the comparative block (108) takes the much simplified form in (113).

(113) Ax =

C′ C′′

E −− E

A′x′ | |
E −− E

E −− E

| | A′′x′′

E −− E

A′x′ A′′x′′

candidates (107a) that dif-
fer only for features in Φ′

candidates (107b) that dif-
fer only for features in Φ′′

candidates (107c) that differ
for both features in Φ′′ and Φ′′

The factorization (113) has two important consequences. Given a ranking� on C, let:

(114) a. �′ = the restriction of� to C′;
b. �′′ = the restriction of� to C′′.

The first consequence of the factorization (113) of comparative blocks is that OT-
compatibility factorizes over the two factors:

(115) � is OT-compatible with x ∈ X ⇐⇒

x = (x′,x′′)
�′ is OT-compatible with x′

�′′ is OT-compatible with x′′

Given two ranking vectors θold,θnew and a comparative row a, split them up:

(116) θold = (θ′old, θ
′′
old)

θnew = (θ′new, θ
′′
new)

The second consequence of the factorization (113) of comparative blocks is that the
behavior of the OT online algorithm factorizes over the two factors:

(117) For every comparative row a that belongs to the two top blocks in (113):

θnew = updateOT(θold,a) ⇐⇒

θnew = (θ′new,θ

′′
new)

θ′new = updateOT(θ′old,a
′)

θ′′new = updateOT(θ′′old,a
′′)

By (15), I don’t need to worry about the case where the current comparative row belongs
to the third bottom block, as such a row will never be sampled.

� Claim 4 If the OT online algorithm is correct for the factor typologies τ ′ and τ ′′ starting
from some initial vectors θ′init and θ′′init respectively, then it is correct for the original
typology τ starting from the initial vector θinit = (θ′init,θ

′′
init).

� Proof. Consider a language L in the typology τ , an L-converging sequence (118a); the
corresponding sequence (118b) of ranking vectors entertained by the OT online algo-
rithm starting from θinit; the corresponding sequence of OT languages (118c).

(118) a. a1

��

a2

��

. . . at

��

. . .

b. θinit
//

��

θ1
//

��

θ2
//

��

. . . // θt
//

��

. . .

c. Linit L1 L2
. . . Lt

. . .

Suppose by contradiction that the OT online algorithm is not correct for τ . This means
that for some target language L we have Lt 6⊆ L in (118), Namely:

(119) There exists some form x ∈ X such that x ∈ Lt but x 6∈ L.

Split up everything:

(120) a. split up the form x in (118) into x = (x′,x′′)

b. split up each comparative row at in (118a) into at = (a′t,a
′′
t)

c. split up each ranking vector θt in (118b) into θt = (θ′t,θ
′′
t)

Consider now the following rankings:

(121) a. � is a ranking that OT-corresponds to target language L, i.e. L;
b. �′ is the ranking induced on C′ by�;
c. �′′ is the ranking induced on C′′ by�.

By (121a),� is not OT-compatible with the comparative block Ax corresponding to the
form x in (119). By (115), this means that either�′ is not OT-compatible with A′x′ or
�′′ is not OT-compatible with the block A′′x′′ . Wlg, suppose the former case holds:

(122) �′ is not OT-compatible with A′x′ .

The situation in (118) entails the situation in (123) — I have just added primes in (123).

(123) a. a′1

��

a′2

��

. . . a′t

��

. . .

b. θ′init
//

��

θ′1 //

��

θ′2 //

��

. . . // θ′t //

��

. . .

c. L′init L′1 L′2 . . . L′t . . .

This can be described as follows: we are training the algorithm on the language L′

corresponding to the ranking �′ within the factor typology τ ′; language L′ does not
contain form x′; yet, θ′t is OT-compatible with it; thus (123) contradicts the hypothesis
that the OT online algorithm is correct for the factor typology τ ′. �

11 Conclusion and applications
� Claim 5 Consider a typology τ = (X , Gen, C) of the form (66)-(77) corresponding to
N features. Assume that:

(124) a. The mode of feature interaction is “simple”:
namely, no binary markedness constraint punishes a form that is unmarked
with respect to both features targeted by that binary markedness constraint.

b. The amount of feature interaction is “limited”:
namely, there are no two binary markedness constraints that target the same
feature.

c. The set of candidates is rich enough:
namely, if features i and j interact through a binary markedness constraint,
then X contains forms that realize all possible combinations for xi and xj .

Then, the OT online algorithm is correct for the typology τ .

� Proof. By (124b), the typology τ can be split up into a certain number of factor typolo-
gies with at most 2 features and no connections between the corresponding components
in the markedness graph. Claim 4 thus guarantees that in order for the OT online algo-
rithm to be correct on τ , it is enough that it is correct on each factor typology. By (124a)
and (124c), that follows from claim 3. �

� Claim 6 Consider the variant of the Azba typology without the distinction between po-
sitional and general faithfulness constraints, as follows:

(125) a.
{

pa, ba, sa, za,
apsa, apza, absa, abza,

}

b. C =

F1 = IDENT[STOP-VOICE] M1 = ∗[STOP-VOICE]
F2 = IDENT[FRIC-VOICE] M2 = ∗[FRIC-VOICE]

M3 = AGREE

c. Gen(pa) = Gen(ba) = {pa, ba},

Gen(sa) = Gen(za) = {sa, za},
Gen(apsa)=Gen(apza)=Gen(absa)=Gen(abza)={apsa, apza, absa, abza}

The OT online algorithm is correct on this typology.

� Proof. Follows straightforwardly from claim 5. �

� Claim 7 Consider again the vowel typology, repeated below:

(126) a. X = Y =

#y -y- y#
#i -i- i#
#o -o- o#
#e -e- e#
#A -A- A#
#a -a- a#

b. C =

F1 = IDENT[HIGH] M1 = *[-HIGH, -LOW] = {o, e}
F2 = IDENT[LOW] M2 = *[WORD-FINAL HIGH]
F3 = IDENT[ROUND] M3 = *[NON-INITIAL, ROUND]

c. Gen is an equivalence relation defined by the following classes:

i. #y Gen∼ #i Gen∼ #o Gen∼ #e Gen∼ #A Gen∼ #a

ii. -y- Gen∼ -i- Gen∼ -o- Gen∼ -e- Gen∼ -A- Gen∼ -a-

iii. #y Gen∼ i# Gen∼ o# Gen∼ e# Gen∼ A# Gen∼ a#

The OT online algorithm is correct on this typology.

Proof. Define the set Φ of features as follows:

(127) ϕ1 = word-final high
ϕ2 = high
ϕ3 = low
ϕ4 = non-initial round

Assume that:

(128) a. [+HIGH] corresponds to value 1;
b. [-LOW] corresponds to value 1.

The set X of forms can then be described as follows:

(129)

#y = [#, 1, 1, 1] -y- = [#, 1, 1, 1] y# = [1, 1, 1, 1]
#i = [#, 1, 1, 0] -i- = [#, 1, 1, 0] i# = [1, 1, 1, 0]
#o = [#, 0, 1, 1] -o- = [#, 0, 1, 1] o# = [0, 0, 1, 1]
#e = [#, 0, 1, 0] -e- = [#, 0, 1, 0] e# = [0, 0, 1, 0]
#A = [#, 0, 0, 1] -A- = [#, 0, 0, 1] A# = [0, 0, 0, 1]
#a = [#, 0, 0, 0] -a- = [#, 0, 0, 0] a# = [0, 0, 0, 0]

and the constraint set can be defined as follows, where the binary markedness constraint
only punishes forms x = (x1, x2, x3, x4) such that (x2, x3) = (1, 1).

(130) C =

F2 M2,3

F3 M1

F4 M4

Split up the set of features as follows:

(131) {ϕ1, ϕ2, ϕ3, ϕ4} = {ϕ1} ∪ {ϕ2, ϕ2} ∪ {ϕ4}

Assumptions (124a) and (124b) are satisfied. Assumption (124c) is not, as there is
no form x = (x1, 1, 0, x4). Yet, we can pretend that the set of forms also contain
(#, 1, 0,#), as this form is unmarked. Correctness of the OT online algorithm thus
follows from claim 5. �

References
Berwick, Robert. 1985. The acquisition of syntactic knowledge. Cambridge, MA: MIT Press.

Davidson, Lisa, Peter W. Jusczyk, and Paul Smolensky. 2004. “The initial and final states:
Theoretical implications and experimental explorations of richness of the base”. In Con-
straints in Phonological Acquisition, ed. R. Kager, J. Pater, and W. Zonneveld, 158–203.
Cambridge University Press.

Eisner, Jason. 2000. “Easy and Hard Constraint Ranking in Optimality Theory”. In Finite-
State Phonology: Proceedings of the Fifth Workshop of the ACL Special Interest Group
in Computational Phonology (SIGPHON), ed. J. Eisner, L. Karttunen, and A. Thériault,
22–33. Luxembourg.

Fikkert, Paula, and Helen De Hoop. 2009. “Language acquisition in optimality theory”. Lin-
guistics 47.2:311–357.

Galil, Zvi, and Nimrod Megiddo. 1977. “Cyclic Ordering is NP-complete”. Theoretical
Computer Science 5:179–182.

Garey, Michael R., and David S. Johnson. 1979. Computers and Intractability. A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman and Company.

Hale, Mark, and Charles Reiss. 1998. “Formal and Empirical Arguments Concerning Phono-
logical Acquisition”. Linguistic Inquiry 29.4:656–683.

Hayes, Bruce. 2004. “Phonological Acquisition in Optimality Theory: The Early Stages”. In
Constraints in Phonological Acquisition, ed. R. Kager, J. Pater, and W. Zonneveld, 158–
203. Cambridge University Press.

Heinz, Jeffrey, Gregory M. Kobele, and Jason Riggle. 2009. “Evaluating the Complexity of
Optimality Theory”. Linguistic Inquiry 40:277–288.

Jusczyk, Peter, Paul Smolensky, and Theresa Allocco. 2002. “How English-learning infants
respond to Markedness and Faithfulness constraints”. Language Acquisition 10:31–73.

Manzini, M. Rita, and Ken Wexler. 1987. “Parameters, Binding Theory, and Learnability”.
Linguistic Inquiry 18.3:413–444.

Prince, Alan, and Bruce Tesar. 2004. “Learning Phonotactic Distributions”. In Constraints in
Phonological Acquisition, ed. R. Kager, J. Pater, and W. Zonneveld, 245–291. Cambridge
University Press.

Revithiadou, A., and Marina Tzakosta. 2004. “Markedness hierarchies vs. positional faith-
fulness and the role of multiple grammars in the acquisition of Greek”. In Proceed-
ings of GALA 2003 (Generative Approaches to Language Acquisition), ed. S. Baauw and
J. Van Kampen, 377–388. Utrecht: LOT Occasional Series. .

Smith, Jennifer. 2000. “Positional faithfulness and learnability in Optimality Theory”. In
Proceedings of ESCOL99, ed. Rebecca Daly and Anastasia Riehl, 203–214. Ithaca, New
York: CLC Publications. .

Smolensky, Paul. 1996a. “On the Comprehension/Production Dilemma in Child Language”.
Linguistic Inquiry 27.4:720–731.

Smolensky, Paul. 1996b. “The Initial State and Richness of the Base in Optimality Theory”.
John Hopkins Technical Report.

Tesar, Bruce. 1995. “Computational Optimality Theory”. Doctoral Dissertation, University
of Colorado, Boulder. ROA 90.

Tesar, Bruce. 2008. “Output-Driven Maps”. Ms., Rutgers University; ROA-956.

Tesar, Bruce, and Paul Smolensky. 1998. “Learnability in Optimality Theory”. Linguistic
Inquiry 29:229–268.

Wareham, Harold Todd. 1998. Systematic Parameterized Complexity Analysis in Computa-
tional Phonology. Doctoral Dissertation, University of Victoria, Dept. of Computer Science.

